If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3+8y^2+16y=0
a = 8; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·8·3
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{10}}{2*8}=\frac{-16-4\sqrt{10}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{10}}{2*8}=\frac{-16+4\sqrt{10}}{16} $
| 13/26=x/35 | | x*(x*2)=90 | | 3x-7x+8=-16 | | 11+9q=+8q | | -(2g+4)-5=11 | | 11x-8/3=12 | | x(3+2^2)-5=11 | | x+30=x+40 | | 6y+5=6(y+2)−7 | | 10-(3x-5)=4(x-5) | | 120/360=x/50 | | 3z+15=6 | | 317=-3+8(6x-2) | | 4=a/9-4 | | x*x2=90 | | 6-6x=-5x-2 | | 3,2+y=8.7 | | (1/12+3/8y=5/12+5/8) | | x/20=3-5(x+1) | | -4=2m+10 | | 6-2(x-3)=6(x+6) | | x×8=56 | | 76-3x=-29 | | 2/9m-1/9=3/54 | | 3v-11=7 | | (5x2+2x5+10x5)(6x5+2x5–8x5)= | | 5x-11=-2x+17 | | 10p-11p=2 | | 6=x/4+4 | | -3(6+5p)=38-8p | | 30=5a+10-2 | | 17-4x=-24 |